Silica-coated magnetite nanoparticles prepared by the one-step electrochemical method for dye removal

  • Heru Setyawan Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember (ITS), Indonesia http://orcid.org/0000-0002-2158-6819
  • W. Widiyastuti Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember (ITS), Indonesia http://orcid.org/0000-0002-2805-2836
  • M Mahmudi Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember (ITS), Indonesia
  • Memik Dian Pusfitasari Department of Chemical Engineering, Institut Teknologi Kalimantan, Indonesia

Abstract

In this paper, the synthesis of silica-coated magnetite nanoparticles using a one-step electrochemical method and their application for dye removal are presented. In this method, pure iron in a dilute aqueous sodium silicate solution that served as a silica precursor was electro-oxidized. The silica-coated magnetite nanoparticles produced by this method is nearly spherical with the size of approximately 10 nm and follows the spinel structure of Fe3O4. The silica-coated magnetite nanoparticles exhibit nearly superparamagnetic properties and excellent performance to remove methylene blue from wastewater. The adsorption capacity of the nanoparticles was approximately 24.2 mg methylene blue/g adsorbent, which was much higher than that of pure magnetite nanoparticles (1.1 mg methylene blue/g adsorbent). Also, the percentage removal was higher than 90% with the initial concentration of methylene blue up to 40 mg/L. It can be regenerated and reused with an only slight reduction in percentage removal.

Downloads

Download data is not yet available.

References

1. Doğan, M.; Özdemir Y. and Alkan, M. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments 2007, 75, 701-703, DOI:10.1016/j.dyepig.2006.07.023.

2. Shedbalkar, U.; Dhanve, R. and Jadhav, J. Biodegradation of triphenylmethane dye Cotton blue by ochrochloron MTCC 517. J. Hazard. Mater. 2008, 157, 472-479, DOI:10.1016/j.jhazmat.2008.01.023.

3. Ali, H. Biodegradation of Synthetic Dyes-A Review. Water Air Soil Pollut. 2010, 213, 251-273, DOI:10.1007/s11270-010-0382-4.

4. Meriç, S.; Kaptan, D. and Tünay, C. Removal of color and COD from a mixture of four reactive azo dyes using Fenton oxidation process. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2003, 38, 2241-2250, DOI:10.1081/ESE-120023371.

5. Aguedach, A.; Brosillon, S.; Morvan, J. and Lhadi, E. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B 2005, 57, 55-62, DOI:10.1016/j.apcatb.2004.10.009.

6. Bromley-Challenor, K. ; Knapp, J.; Zhang, Z.; Gray, N.; Hetheridge, M. and Evans, M. Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Res. 2000, 34, 4410-4418, DOI:10.1016/S0043-1354(00)00212-8.

7. Shi, B.; Li, G.; W. D.S., Feng, C. and Tang, H. Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J. Hazard. Mater. 2007, 143, 567-574, DOI:10.1016/j.jhazmat.2006.09.076.

8. Seredych, M. and Bandosz, T. Removal of cationic and ionic dyes on industrial municipal sludge based composite adsorbents. Ind. Eng. Chem. Res. 2007, 46, 1786-1793, DOI:10.1021/ie0610997.

9. Adak, A.; Bandyopadhyay, M. and Pal, A. Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep. Purif. Technol. 2005, 44, 139-144, DOI:10.1016/j.seppur.2005.01.002.

10. Kannan, N. and Sundaram, M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons – a comparative study. Dyes Pigments 2001, 51, 25-40, DOI:10.1016/S0143-7208(01)00056-0.

11. Singh, K.P.; Mohan, D.; Sinha, S.; Tondon, G.S. and Gosh, D. Color Removal from Wastewater Using Low-Cost Activated Carbon Derived from Agricultural Waste Material. Ind. Eng. Chem. Res. 2003, 42, 1965-1976, DOI:10.1021/ie020800d.

12. Handreck, G. and Smith, T. Adsorption of methylene blue from aqueous solution by ZSM-5-type zeolites and related silica polymorphs. J. Chem. Soc. Faraday Trans. 1988, 84, 4191-4201, DOI:10.1039/f19888404191.

13. Ahmed, M.N. and Ram, R.N. Removal of basic dye from wastewater using silica as adsorbent. Environ. Pollut. 1992, 77, 79-87, DOI:10.1016/0269-7491(92)90161-3.

14. Lim, J.K.; Yeap, S.P. and Low, S.C. Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purificat. Technol. 2014, 123, 171-174, DOI:10.1016/j.seppur.2013.12.038.

15. Pang, K.M.; Ng, S.; Chung, W.K. and Wong, P.K. Removal of Pentachlorophenol by Adsorption on Magnetite-immobilized Chitin. Water Air Soil Pollut. 2007, 183, 355-365, DOI:10.1007/s11270-007-9384-2.

16. Mayo, J.T.; Yavuz, C.; Yean, S.; Cong, L.; Shipley, H.; Yu, W.; Falkner, J.; Kan, A.; Tomson, M. and Colvin, V. L. The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 2007, 8, 71-75, DOI:10.1016/j.stam.2006.10.005.

17. Dong, J.; Xu, Z. and Wang, F. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl. Surf. Sci. 2008, 254, 3522-3530, DOI:10.1016/j.apsusc.2007.11.048.

18. Saiz, J.; Bringas, E. and Ortiz, I. Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters. J. Chem. Technol. Biotechnol. 2013, 89, 909-918, DOI:10.1002/jctb.4331.

19. Setyawan, H. and Widiyastuti, W. Progress in the Preparation of Magnetite Nanoparticles through the Electrochemical Method. KONA Powder Part. J. 2019, 34, 1-11, DOI:10.14356/kona.2019011

20. Feng, L.; Cao, M.; Ma, X.; Zhu, Y. and Hu, C. Superparamagenetic high-surface-area Fe3O4 nanoparticles for arsenic removal. J. Hazard. Mater. 2012, 217-218, 439-446, DOI:10.1016/j.jhazmat.2012.03.073.

21. Maity, D. and Agrawal, D.C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 2007, 308, 46-55, DOI:10.1016/j.jmmm.2006.05.001.

22. Zhang, Y.-R.; Wang, S.-Q.; Shen, S.-L. and Zhao, B.-X. A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chem. Eng. J. 2013, 233, 258-264, DOI:10.1016/j.cej.2013.07.009.

23. Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L. and Jiang, J. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 2011, 198, 282-290, DOI:10.1016/j.jhazmat.2011.10.041.

24. Cabrera, L.I.; and Martinez, M.; Reyman, D.; Crespo, P.; Morales, M.P. and Herrasti, P. One single-step synthesis of multifunctional methylene blue-coated magnetite nanoparticles. J. Nanopart. Res. 2011, 13, 6931-6939, DOI:10.1007/s11051-011-0602-x.

25. Hakami, O.; Zhang, Y. and Banks, C.J. Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res. 2012, 46, 3913-3922, DOI:10.1016/j.watres.2012.04.032.

26. Fajaroh, F.; Setyawan, H.; Widiyastuti, W. and Winardi, S. Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv. Powder Technol. 2012, 23, 328-333, DOI:10.1016/j.apt.2011.04.007.

27. Setyawan, H.; Fajaroh, F.; Widiyastuti, W.; Winardi, S.; Lenggoro, I. and Mufti, N. One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution. J. Nanopart. Res. 2012, 14 (807), 1-9, DOI:10.1007/s11051-012-0807-7.

28. Fajaroh, F.; Setyawan, H.; Nur, A. and Lenggoro, I. Thermal stability of silica-coated magnetite nanoparticles prepared by an electrochemical method. Adv. Powder Technol. 2013, 24, 507-511, DOI:10.1016/j.apt.2012.09.008.

29. Yantasee, W.; Warner, C.L.; Sangvanich, T.; Addleman, R.S.; Carter, T.G.; Wiacek, R.J.; Fryxell, G.E.T.C. and Warner, M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 2007, 41, 5114-5119, DOI:10.1021/es0705238.

30. Setyawan, H.; Fajaroh, F.; Pusfitasari, M.D.; Yuwana, M. and Affandi, S. A Facile method to prepare high-purity magnetite nanoparticles by electro-oxidation of iron in water using pulsed direct current Asia-pacific J. Chem. Eng. 2014, 9, 258–261, DOI:10.1002/apj.1828.

31. Socrates, G. Infrared and Raman characteristics group frequencies, 3rd ed; John Wiley & Sons, Ltd.: New York, USA, 2004, pp. 324-325, ISBN:978-0-470-09307-8.

32. Setyawan, H.; Yuwana, M.and Balgis, R. PEG-templated mesoporous silicas using silicate precursor and their applications in desiccant dehumidification cooling systems. Micropor. Mesopor. Mat. 2015, 218, 95-100, DOI:10.1016/j.micromeso.2015.07.009.

33. Rahman, N.; Widhiana, I.; Juliastuti, S. and Setyawan, H. Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source. Coll. Surf. A 2015, 476, 1-7, DOI:10.1016/j.colsurfa.2015.03.018.

34. Chang, C. and Wu, Y. Preparation and characterization of superparamagnetic nanocomposites of aluminosilicate/magnetite. Coll. Surf. A 2009, 336, 159-166, DOI:10.1016/j.colsurfa.2008.11.042.
Published
2018-07-14
How to Cite
SETYAWAN, Heru et al. Silica-coated magnetite nanoparticles prepared by the one-step electrochemical method for dye removal. Journal of Powder Technology and Advanced Functional Materials, [S.l.], v. 1, n. 1, p. 1-11, july 2018. ISSN 2621-573X. Available at: <http://ojs.jpfoundation.or.id/index.php/jptafm/article/view/16>. Date accessed: 17 aug. 2018. doi: https://doi.org/10.29253/jptafm.1.1.2018.1.
Section
Articles